
Robot Visual Mapper

Hung Dang, Jasdeep Hundal and Ramu Nachiappan

Abstract— Mapping is an essential component of autonomous
robot path planning and navigation. The standard approach
often employs laser range finders, however, they are expensive.
Cameras can be used but it is difficult to extract accurate range
information. For our project, we develop a simple method for
local planar mapping of a robot’s surrounding environment
using only monocular camera images. We utilize SURF to
calculate the change in a robot’s orientation and implement a
simple segmentation method to identify obstacles in an image.
A local map of the robot’s surrounding can be built by applying
a pin hole model to the segmented image and combining
the result with the calculated orientation. In addition, using
Singular Vector Machine, we implement a simple classifier that
detect uniquely colored fluorescent objects. We test our methods
in different indoor environments with a Rovio equipped with
an on-board web camera. The results demonstrate that our
mapping algorithm is able to produce a local map with a decent
accuracy on the level of a sonar sensor and that our SVM
target classifier performs well in detecting and locating bright
color objects. We attempted to integrate both into a complete
path planning algorithm but were not successful because of our
inability to localize accurately.

I. INTRODUCTION

The objective of our project in essence is to implement
SLAM. Our ambitious goal is to have Rovio roam its
environment mapping and identifying targets of interest. Our
more humble goal though is to do just that but in a much
more simplistic indoor environment filled with orange cones
as landmarks and targets of interest marked with green tags.
Figure 1 shows a typical image, taken using Rovio’s on-
board camera, of the environment that our Rovio operates in.
Though the application and implementation of SLAM have
already been demonstrated, we felt that our project is unique
nonetheless because of Rovio, which only has a web-cam
that we can really use to implement SLAM. As such, there
are several stages to our project. They are: mapping, object
recognition and path planning, all of which are discussed to
a great extent in subsequent sections.

The rest of the paper is divided into four section and is
organized as follows. In Section II, we discuss our approach
to the first major stage of our project - local 2D mapping
from an image. Object recognition is presented in section III.
Section IV details both numerical and qualitative evaluation
of all of our implemented algorithms. Finally, we close with
a few remarks in Section V and give a general idea of how
we would have approached path planning if we were able to
solve the global mapping problem.

Hung Dang is with the School of Mechanical and Aeronautics
Engineering, Cornell University. Jasdeep Hundal and Ramu Nachiap-
pan are with the School of Computer Science, Cornell University.
{hvd2,jsh263,rn54}@cornell.edu

Fig. 1: A typical image of Rovio’s environment

II. LOCAL 2D MAPPING FROM AN IMAGE

As mentioned in the introduction, one of the major goals of
the project is to map the surrounding environment of Rovio.
Using only the camera on-board Rovio and through the
application of SURF, a simple carpet segmentation method,
and pin hole model, we solve the problem of mapping the
free space in Rovio’s field of view. The overall architecture
of the local 2D mapping is summarized inFigure 2.

Fig. 2: Overall architecture of local 2D mapping

A. SURF (Speeded Up Robust Features)

SURF is used to detect and describe features in images,
much like the SIFT algorithm. Developed in 2006, it is



purported to be more robust than SIFT at identifying features,
along with clearly being the faster algorithm [1].

We experimented with both SIFT and SURF, and settled
on the OpenSURF implementation written by Christopher
Evans to determine which was more robust for the environ-
ment in our project. We compared the performance of SIFT
and SURF across several pairs of images of the Robot Lab
taken by the Rovio. It was quickly seen that SIFT matched
features in the carpet between the images, and that most of
those features were not matched to the correct location in
the carpet. SURF picked up at most one to two carpet pixels
in each image, and produced a significant number of solid
matches otherwise, so it was picked as our feature detection
algorithm. An example of such is shown inFigure 3

Fig. 3: A typical output of OpenSURF

Despite SURF’s apparent robustness compared to SIFT,
we were unable to use it in combination with the pin-
hole camera model to directly map the location of objects.
Distance measures using SURF features were not reliable,
mostly due to the fact that SURF did not pick up many
features that were right along the floor. These would be the
ones that would be most accurate with the pinhole model.
Most of the features were beyond the four foot of the pinhole
camera model. An extension of finding distance change using
a set of two images and matching features with SURF
was proven useless as nearly zero features along the floor
matched between the images taken after forward movement.

However, SURF did prove useful for orienting the Rovio
by determining change in angle. The well-matched set of
features between two images taken by the Rovio shifting
angles gave a reliable pixel shift between the images by
taking the median pixel shift among all matched features.
With the assumption that the shift in pixels had a roughly
linear correspondence to the shift in angle, the change in

angle can be computed as
p∆θw

pw

, wherep∆ is pixel shift,

pw is the pixel width of the images, andθw is the field of
view of the Rovio in degrees (found through measurement).

B. Carpet Finder Algorithm

A major component of our project is obstacle detection.
Without it, robot movement would be very restrictive and
fragile. There are many techniques that can be used for ob-
stacle avoidance. The best technique depends on the specific
environment and the equipment. For our project, the task of
obstacle avoidance is executed within an indoor environment
hence a carpet segmentation approach is deemed to be the
most stable approach.

Since the carpet or floor plane contains more than one
pixel color, we can make an assumption that the immediate
foreground of the robot is obstacle free. If we were to sample
the colors in the lowest part of the image which is the
immediate space in front of the robot we could use these
color samples and find them in the rest of the image. By
searching for all pixels who share the same or similar color
to those pixels in this sample space we can theorize that
those pixels are also part of the carpet.

This process can be accomplished by performing the
following image processing steps. We first sample a small
rectangular region in the lowest center part of the image.
Pixels within this rectangular region are used to understand
what pixel colors are likely to be floor pixels. Iterating
through all the pixels inside the sample space, we find the
the maximum and minimum pixel value for each of the three
color channels. With these ranges known, we iterate through
the rest of the image and classify any pixel within these
ranges as carpet pixel and those outside of the ranges as
obstacle pixels. The result is a binary image as shown in
Figure 4.

Fig. 4: Binary image

The black pixels in the binary image now represent all
pixels in the image that are similar to those found in the
sample space. We can see that this works quite nicely to
segment out the carpet but the method is not perfect since it
does not take into account the effects of shadow and other
global features. Thus, we then dilate the image with a 3 by
3 mask of all ones to remove those small noisy holes in the
segmented carpet as inFigure 5.

Then we label all of the connected components and discard
any connected component with size less than 80 pixels
(Figure 6). This removes many false negative carpet pixels.
Finally, we iterate through the columns of the resulting
binary image saving the lowest row index (height) of the
carpet space at that column, which corresponds to the closest
object in that orientation. This vector is input to the pin hole
model, from which the obstacle boundary can be calculated.



Fig. 5: After dilation

Fig. 6: After removal of small connected components

C. Pin Hole Model

For a given pixel point in an image, we want to know the
corresponding coordinates of the location represented by that
pixel with respect to the camera. We develop a method to do
just that by using the pinhole camera model. The pin hole
model describes the mathematical relationship between the
coordinates of a three dimensional point and its projection
onto the image plane. It is a first order approximation with
the assumption that the camera aperture is described as
a point without any lenses. It does not take into account
lens distortion, which occurs in real cameras. Its accuracy
depends on the quality of the camera and decreases from the
center of the image to the edges [2]. The geometry related
to the pin hole model is illustrated inFigure 7.

Fig. 7: Pin hole model illustration

Mathematically, the pin hole model is expressed as fol-
lows.

[

y1

y2

]

= −
f

x3

[

x1

x2

]

(1)

We used a number of calibration images where the distance
to the object was known to determine the focal length. After
the focal length was determined we solve forx1 andx3 in
the image above usingy1 andy2. x2 is always the height of
the camera above the ground. This turned out to be 3.5 or
6.0 inches based on the Rovio’s camera position, down and
up respectively.

We actually implemented two versions of the pinhole
camera model. The first one assumed that the pixel being
measured was at the height of the floor and could from a
single image determine the x1 and x3 coordinates of the
object in relation to the robot. To determine the position of
an object, we inputed the bottom most pixel of the object
adjacent to a carpet pixel. Hence we can assume it is at
the plane of the floor. This was usually determined from the
output of our carpet classification code.

The second algorithm could determine the three dimen-
sional position of an object with relation to the robot but
required stereo images and corresponding points in both
images. Theoretically any point in the image should only
be shifted vertically between the images captured with the
camera in the up and the down position. The corresponding
points in the two images were determined using SURF. This
mostly held true, but some horizontal shifting was detected
probably due to flaws in the camera arm position. Ignoring
the horizontal differences, the size of the vertical shift will
depend only on the distance of the object from the camera.
The solved version of the pinhole camera model is below:

x3 =f
camera height up − camera height down

ydown
2

− y
up
2

(2)

hobj =
y

up
2

x3

f
+ camera height up (3)

x1 =
ydown
1 x3

f
(4)

Our initial goal with the 3D camera model was to be able to
map unique landmarks and then use them for localizing the



robot. While SURF turned out to match surprisingly few false
positives between images, most of the matches were in the
background beyond the range of the pinhole camera model.
The location of foreground features could be determined to
within a few inches in all three dimensions. However unlike
the background features, these were much less invariant to
movement and could not be matched between translations of
the robot. The problem with foreground objects is that the
features found on the edges depended on the background
behind them. Hence the same location on the cone might
have brown pixels from a door behind it when viewed
from one location and white wall pixels behind it when
viewed from another location. This meant that while a nearby
landmark could be placed on the map quite accurately, it
could not be matched for purposes of localization after the
robot moved significantly. If these issues could be addressed,
perhaps through filtering, then this could be a very promising
tool to solve the localization problem.

III. SVM TARGET CLASSIFIER

Vision has been our main focus for the entire project,
in particular, finding the best learning algorithm to identify
orange cones and green tags in an image. We created a data-
set of images of cones and boxes with green tags under
various lighting conditions and at a number of distances
taken from Rovio’s camera. We manually segmented the
orange cones and green tags for all images in the data-
set (Figure 8). We wrote a K Nearest Neighbor classifier
algorithm but abandoned the approach since it was computa-
tionally very expensive. Consequently, we switched to using
Support Vector Machine[3] since it is much faster.

Fig. 8: Positive sample for SVM

For now we are using brightly colored objects such as
an orange cone and fluorescent pieces of paper as labels.
Since these colors are rare in our testing environment, they
relatively easy to recognize using pixel color alone. Our
algorithm for locating these objects works on a pixel by pixel
level. Our classifier’s goal is to identify all the pixels in the
unknown image as members of the target object. To train the
classifier we manually labeled the pixels that were part of the
target object in a series of training images using the magic
wand in GIMP. These pixels that are part of the target object

were extracted and saved in separate files. For the training of
some classification algorithms we also needed the negative
pixels so that we can estimate the distribution of negatively
pixels as well. This can easily be obtained by subtracting
the extracted pixels from the original image to obtain the
negative image. Initially, we worked with a kNN classifier
to label all the pixels in our image corresponding to the cone.
However, this turned out to be quite slow since just one photo
has more than 300,000 pixels. So we have switched to using
a linear classifier. Using a SVM to classify the pixels results
in faster classification with a success rate given by SVM
light program to be about 98.5% (Figure 9).

Fig. 9: Segmented output using SVM

IV. EXPERIMENTS

A. Pin Hole Model

We performed a number of experiments to assess the
validity of the distance measurement using the pin hole
model during calibration. We found the distance measure-
ments usable for navigation within the range of 3-5 feet.
The errors exponentially with distance from the robot. Less
than 2 feet, the errors were about 1-2 inches. At 3 to 4 feet,
these rose to 3 to 4 inches. At 6 feet the errors typically
were on the order of 1 foot which about the size of the
robot and hence we found at this range the measurements
were no longer useful for navigation. Beyond 10 12 feet
we found in some cases the errors could exceed 100%
on the positive direction. What was clear from the long
distance measurements was that the error distributions were
not symmetric. This exponential scaling of errors could be
explained by the mapping of forward distances on the floor
from 0 to infinity onto a finite number of pixels in our image.
Hence, while camera noise causing a single pixel error might
represent only a few fractions of an inch near the camera, it
would mean an error of many feet closer to the horizon.

While initially we expended great effort on calibration of
the camera parameters, we realized that due to differences
between robots it was a futile effort. Both horizontal and
vertical camera angles differed slightly among the robots.
This would translate into different horizon heights in our
model and as well as some non-linear errors we could not



correct. Even the parameters for the same robot changed over
time due to mishandling by users. To reduce the impact of
bad camera orientations on the 2D pinhole camera model ,
we resorted to using the camera in the down position where
we expected less robot to robot variance.

B. Local 2D Mapping

We tested our local 2D mapping method in several envi-
ronment settings. An example of such is shown inFigure 10.
For each environment, we rotated Rovio about 20◦ and
repeated it to make a complete 360◦ scan. At each rotation,
we took a picture and used the local 2D mapping method
together with the orientation as calculated by SURF and
the pin hole model to calculate the x and y location of the
obstacles.

Fig. 10: An experimental setup

The resulting map is shown inFigure 11. Qualitatively,
one can see that our developed local 2D method indeed maps
the general outline of the environment. The tube of paper is
clearly mapped as well as the curved up foam piece. The
location and orientation with respect to Rovio of the stack
of cones is shown correctly and even the chairs show up in
the map. However, our method also picks up random noises
and this is expected due to the nature of our segmentation
method and the pin hole model approximation. Overall, the
error of the map as compared to the actual setting is on the
order of half a foot. Some of this error can be attributed
to the error in the estimation of Rovio’s orientation using
SURF. On average, the error in the orientation measured by
SURF is about±2◦

V. CONCLUSIONS

The goal for our project is to simultaneously localize
Rovio and map its environment and target objects. In some
measure, we succeeded all of the major tasks of SLAM even
though we weren’t able to implement a full SLAM. We
successfully developed a stable method to map all objects
within a circle close to the robot for indoor environment
using a simple segmentation approach. We were able to train
the robot to recognize objects by color, and we have an
analytical solution to find the distance to an object that is
within four feet of the robot.

Fig. 11: Mapping result

The next step in regards to recognition is to implement
a learning algorithm that fits distance data to the known
equation for finding distance. We think that this approach
will help us tune the robot to account for any regular noise
that causes the result of the equation to deviate from actual
distance. For future work, we may use a feature detection
approach to recognize more complicated and realistic ob-
jects, such as chairs. A definite major task to be completed
in the future is the unification of our object recognition
and distance finding approaches into full SLAM specifically
solving Rovio’s localization problem

We intend to use cell decomposition approach to path
planning with obstacles represented as polygons and way-
points as midpoints of the borders of free space. This would
ensure that the robot has as much space as possible to move
around. Dijkstra algorithm would be used to generate the
shortest path given the starting way-point and the final way-
point.

VI. ACKNOWLEDGMENTS

We would like to thank Jonathan Diamond for his assis-
tance and our fellow classmates for the fun time shared in
the Rovio lab.

REFERENCES

[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. “URF:
Speeded Up Robust Features”,Computer Vision and Image Under-
standing (CVIU), Vol. 110, No. 3, 2008, pp. 346-359.

[2] M. Sonka, V. Hlavac and R. Boyle,Image Processing, Analysis, and
Machine Vision, Thomson-Engineering; 2007

[3] T. Joachims, “Making large-Scale SVM Learning Practical. Advances
in Kernel Methods - Support Vector Learning”, B. Schlkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.


	INTRODUCTION
	LOCAL 2D MAPPING FROM AN IMAGE
	SURF (Speeded Up Robust Features)
	Carpet Finder Algorithm
	Pin Hole Model

	SVM TARGET CLASSIFIER
	EXPERIMENTS
	Pin Hole Model
	Local 2D Mapping

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

